
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1927

The effect of nickel upon the stability of iron
carbide and upon the microscopic structure of
white cast iron compositions
Milo J. Stutzman
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Physical Chemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Stutzman, Milo J., "The effect of nickel upon the stability of iron carbide and upon the microscopic structure of white cast iron
compositions" (1927). Retrospective Theses and Dissertations. 14683.
https://lib.dr.iastate.edu/rtd/14683

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14683&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14683&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14683&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14683&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14683&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14683&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=lib.dr.iastate.edu%2Frtd%2F14683&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/14683?utm_source=lib.dr.iastate.edu%2Frtd%2F14683&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com



www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps. 

ProQuest Infonmation and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600 



www.manaraa.com



www.manaraa.com

NOTE TO USERS 

This reproduction is the best copy available. 

UMI' 



www.manaraa.com



www.manaraa.com

THE EFFECT OF MCKEL UPOI THE STABILITY OF IROK CARBIDE 

MH UPOH THE MICROSCOPIC STRUCTURE OF Y/HITE 

CAST IROH COLCPOSITIOHS 

BY 

Milo J. Stutzman 

A Thesis submitted to the Graduate Faculty 
for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Subject: Physical Chemistry 

Approved: 

In charge of Major wor]c. 
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 ̂ THE EFFECT OF mCKEl UPON THE STABILITY OF IRON CARBIDE 

AlID UPON THE MICROSCOPIC STRUCTURE OF FtllTE 

CAST IROH COMPOSITlOHS 

By Milo J. Stutzman 

I. INTRODUCTION 

In 1923 and »24 when the investigation on the shorten­

ing of the annealing cycle for malleable cast iron, by Hayes 

and Diederichs U) v/as being carried out in this laboratorŷ  

it became apparent that a study of the physical and chemical 

factors affecting the rate of graphitization was needed. 

Since that time some work has been published on the effects 

of both the physical and chemical factors. In 1925 Hayes, 

Diederichs and Flanders (2) investigated the effects of an­

nealing temperatures on the rates of graphitization and on 

the properties of the malleable iron produced. In the same 

year Schwartz and Guiler 13) made a q[ualitative investigation 

of those elements that inhibit graphitization. In 1926 

Ki3cuta 14) studied both the physical factors and the elements 

of regu3.ar malleable cast iron compositions and their effects 

on both the rates of graphitization and the physical proper­

ties. 

The effect of chemical composition on the rate of graph­

itization and the physical properties of the product is now 
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being inTestigated in this laborato2?y» for those elements 

found in commercial malleable iron and for alloying elements. 

The worl: discussed in this paper is on the effect of niclcel 

additions to commercial malleable iron. 
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II. REVIEW OF THE LITERATURE 

A. The Meohanism of Graphitlzation; 

The mechanism of graphitization as outlined "by Hayes 

and co-workers 11) of this laboratory, takes place in two 

stages: first, the graphitization of the free cementite at 

a temperature above the Aj. stable and during cooling from 

the high temperature to the eutectoid and second, the graph­

itization to ferrite and graphite at the Ai stable, or below* 

Figure 1 shows the iron-carbon diagram v/ith the stable 

iron-carbon eutectoid and the carbon solubility line drawn 

as proposed by Hayes and Diederichs (1), This is for a one 

percent silicon alloy, and may be used only for q.ualitatii'-e 

values of alloys of about the same composition. For g[uanti-

tative data a ternary diagram is necessary. Line AJ repre­

sents the solubility of carbon from carbon in austenite and 

the line AC represents the solubility of carbon from iron car­

bide in the same solution. Consider a sample of 8.20 per 

cent carbon with the regular structure of white cast iron. 

The first step then of the graphitization is the graphitization 

of the free cementite at the nigh temperature, for example, at 

925 degrees centigrade-. According to this theory for the 

meohanism of graphitization the graphite particle first forms 

in contact with the cementite.' Additional carbon then precip-
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itates on these already formed nuclei from the solid solu-

j tion which contains more earhon than correspondii to :the solu­

bility of carbon from carbon. This then allows more of the 

free cementite to dissolve and carbon to precipitate, until 

all of the free cementite is used up. 

The next step in the annealing process is the cooling 

" from the high temperature to the eutectoid. According to 

the law of mass action, the further a reaction is from equi­

librium at constant temperature the greater' the rate of re­

action, In the present reaction if the cooling is too rapid 

the composition will cross the line AC and free carbide will 

again be precipitated. If the cooling is too slow the reac­

tion ?/ill be slowed up due to the approach of eg.uilibrium con­

ditions, Thus the cooling should be such as to keep the com­

position .just below the solubility of carbon from the iron 

carbide, 

A.t the iron-carbon eutectoid ferrite and graphite sepa­

rate. The first ferrite will be precipitated about the car­

bon nucleus and the graphite deposited upon it. But it has 
\ 

been shown in this laboratory by Hayes, Diederichs and 

Flanders (1) that at the iron-carbon eutectoid fine graphite 

particles are precipitated throughô  the__solid sojl̂ utl̂ on̂ with 

the precipitation of ferrite. Hov/ever, time is required for 
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the reaction to be complete and if the time is not sufficient 

pearlite will result, due to the action of the meta-stahle 

iron-iron carhide eutectoid* 

B. Physical Factors Effectin/̂  the Rates of Oraphitiaation: 

The effect of the annealing temperature on the time re­

quired and the microstructures produced was studied "by Fisher 

16), ??hite 15), Hayes, Diederichs and Flanders 11), and "by 

Kilcata 14). \Vhite showed very clearly by photomicrographs 

the change that takes place at the high temperature and that 

the logarithm of the time required for the disappearance of 

free carbide bears a straight line relation to the tempera- , 

ture* This checks the results of Hayes and of Kikuta, Hayes 

has also shown that the carbon is precipitated in good form 

if the temperature is not higher than 992®G« 1̂820 F.), and 

the iron shows good physical properties. The rate of heating 

has little or no effect on either. However, if poor carbon 

form is obtained by too high a temperature it can not be 

changed by heat treatment. The following table taken from 

the data of Kikata shows the time required for the disappear­

ance of free cementite at the different temperatures: 
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:Annealing Temperature Time of 1st Stage. ; 

1 875̂ C. 11607"'?.) 

i 90d®C. 1165E®F.) 

! 925®G, 11691®?.)̂  

! 950®C. 1174E®F.) 

i 975®C. 11787®F.) 

9 hrs. 0 min, : 

4 30 ! 

2 50 ! 

2 0 : 

1 20  ̂; 

The effect of pouring temperature on the rate of 

graphitization at the high temperature ia shorn "by the fol­

lowing data taken from the work of Kikuta: 

: Pouring Temperature Time of 1st Stage. : 

i 1300®C. (2372?F.) 5 hrs. 0 min. ; 

: 1350®C, 12462®F.);;, 5 30 i 

i 1400®C. 6 SO i 

\ 1450®C. IE64E®F.) 7 0 ; 

1500̂ 0. 12732°F.) 8 0 

! 1550®C. t282E®F.) 
• 

8 SO ! 
h m 
» • 

This increase in the time required for annealing with 

an increase in the pouring temperature was explained by 
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\ 

fj 

Kilcuta as due to driving out of the metal the oxides of 

oarlJon, which are fcaown to act as a catalyst on the graphi-

tization processes. This might also be the effect of the 

coarser white iron structure which results in the formation 

of more massive cementite, which in turn would req.uire more 

time to be absorbed. In thick sections of malleable iron 

castings this is found to be the case. The cementite is much 

larger grained and thicker and upon annealing requires more 

time to graphitize. Because of the difficulties of machining 

and working the white iron, Kikuta studied the effect of time 

of cooling on the form of cementite and the time for armealing, 

by pouring the alloys into dry sand, green sand, and iron 

molds at different temperatures. The structures thus obtain­

ed were similar to those found in the heavy portions of regu-

Ifir castings. The following table-gives the results of this 

investigation: 

V 

I 

4 

Time at 925®C, Time at Eutectdid. 
n #2 #1 

Green sand 5 hrs. 

Dry sand 6 8 hrs. hrs, ; 

Iron at 400®C. 1752®F.) 7 1/2 — — 

Iron at 600®C. 
/ 

11112®F.) 9 11 1/3 21 

Iron at 800*̂ 0. 11472®?,) 

. 1183E®F.) 

9 1/3 14 

15 1/3 
1 

Iron at 1000®C 

11472®?,) 

. 1183E®F.) 10 
1 

14 

15 1/3 
1 • 
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C. Effects of Chemical Compositioii on 
The Rates of Grraphitizatlon-, 

While the v/ork of Hayes and. Diederiohs 11) on the 

shortened annealins cycle for malleahle iron vias being car­

ried out in this laboratory, the lack of reliable data on 

the effect of chemical composition on graphitization soon 

became evident. In 1925 Hayes and Flanders IE) studied the 

effect of sulfur on the speed of graphitization. In the same 

year Schwartz and Guiler i3) determined q.ualitatively, by ad­

ditions of alloying elements to commercial v/hite cast iron 

and annealing with a regxilar commercial anneal, those ele­

ments which inhibit graphitization. The following list of 

elements were found to have appreciable effects in inhibit­

ing the graphitization reaction: antimony, boron, chromium, 

cerium, lanthanium, rare earths, selenium, telurium and tin. 

The work of most value on the effects of chemical compo­

sition on annealing times is that of Kilcuta, He studied the 

effects of the elements found in regular commercial malleable 

iron, carbon, silicon, manganese, sulfur and phosphorus. The 

results of this work are shown in figure 2 and in the follow­

ing summary: 

1, Silicon increases the rate of graphitization both in the 

critical range and at the high temperature. This is shown 
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in curves I, II, III, IV of figure 2, Kilcuta expresses 

the first stage of the graph!tization as a logarithmic 

function of the concentration of silicon. The equation is, 

t = lA) IS^) 

where t is the time for the absorption of the free carbide 

at a temperature of 925''C.,, 11697®?.), S the y/eight per cent 

of silicon and A and S constants dependent on the concen­

tration of the other elements, and v?hen the carbon content 

is 2̂ 00 per cent this expression becomes, 
— S 773 

t I in hours) = 110.64) (S ' ) 

and when carbon equals 2,50 per cent, 

t = 16.356) 

V7ith carbon equal to 2,85 per cent 

t = 18,040) 

The second stage of the graphitization was carried out 

at a temperature below the The effect of silicon 

is shown in curve IV of figure 2. The time may be expressed 

by the equation, 

t » lA) le"^^). 

For an. alloy containing 2.50 per cent carbon this expression 

becomes, 

• c:i/i\ n \ I ~'2»09 S« t = 11.514) 110 ) le ). 
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S. Carbon increases the rate of graphitization in the crit­

ical range with little or no effect on it at the high temper­

ature. 

3, Manganese retards the rate of graphitization in both 

stages. The effect is more marJced in the critical range than 

at the high temperature. The effect on the first stage is 

shovm in curve Y, figure S, He states that manganese should 

not be more than 0.5 per cent for good malleable iron. 

4, Sulfur,like manganese, retards graphitization in both the 

critical range and at the high temperature. The effect is, 

however, much greater than in the case of manganese. This is 

shown for the first stage in curve ¥I of figure 2» According 

to Kilaita, for good malleable iron it should not exceed 0.16. 
•Vp' 

5, According to Kikata, phosphorus increases the ratê  of 

graphitization in the first stage and hinders it in the second 

stage, and suggests that it should not exceed 0.3 per cent for 

good malleable oast iron. The measurements of Eikuta on the 

effects of phosphorus are not significant because of variations 

in manganese and sulfiir content of the alloys used in this 

study, 

5, From a review of the literature it is found, as stated by 

Kikuta, that those elements which are associated with the car­

bide tend to retard graphitization and those that are associ­

ated with the solid solution accelerate it. 
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A theory may be suggested for the mechanism of these 

effects of alloying elements. Prom the laws of solutions it 

is known that the addition of one constituent to another, in 

such concentrations as they are miscible v/ith each other, de­

creases the activity of the diluted constituent. Thus if an 

alloy element be added to white cast iron and be associated 

vfith the iron carbide, the activity of the iron and the car­

bon in the carbide will be decreased. These activities, at 

equilibrium, are equal to the activities of carbon and iron 

from the gamma iron solid solution. The activity of the iron 

from the solid solution of gamma iron may be considered con­

stant for these variations of its concentration. The activi­

ty of the carbon from the graphite will be a constant, and 

equal to the activity of carbon from the solid solution at 

equilibrium. Thus by dilution the activity of the carbon 

from, the iron carbide solution may be decreased until it is 

equal to or even less than the activity of the carbon from 

graphite. In such a case the reaction would proceed in the 

reverse direction. 

As the graphitization of a white cast iron proceeds the 

alloying element is concentrated in the remaining carbide, 

and thus exerts a greater retarding effect as the reaction 

progresses and may even stop the reaction entirely viien the 
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activity of the carbon from the iron carbide equals that 

from graphite. This has been found to be the case v;ith 

some alloys. 

For the case where the alloyed element is miscible 

with the gamma iron solution and nonraiscible with the car­

bide the activity of the iron will be decreased. Iron from 

the iron carbide will then be dissolved and leave the activ­

ity of the carbon froia the iron carbide greater. The effect 

of a change of the gamma iron solvent as affected by the ad­

dition of an alloying element, on the activity of the solu­

bility of carbon either from iron carbide or from graphite, 

can not be stated, Hov/ever the activity of the carbon from 

graphite is a constant. The activity of carbon from iron 

carbide is increased by a decrease of the activity of the 

iron. Then the difference between the activities of carbon 

from iron carbide and from graphite is increased and the rate 

of reaction increased. 

It has also been suggested by some writers that the ef­

fect may be due to changed rates of migration of the carbon 

particles, 

D. Alloys of Iron and ITicfcel; 

Investigations of the iron-nickel alloys have been in­

stigated by the commercial interests in compositions found 
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in steels, gray cast iron, invar and roonel metal, !i?he 

characteristic Widmansttaten structure of meteoric iron has 

attracted attention of some of the most outstanding metal-

lographists. In figure 3 is shown the iron-nici:el phase dia­

gram first proposed by Osmond and Cartard (7) and later re­

vised by Hanson and Manson (8). Iron and nickel form com­

pletely miscible solution both in the liquid and in the solid 

state. The transition points of iron are lowered by the ad­

dition of nickel, nickel is more soluble in gamma iron than 

in the alpha. The magnetic A-a change is lov/ered in the alpha 

iron but appears again in the high nickel gamma solution, and 

reaches a maximum at about 70 per cent nickel. According to 

the diagram of Osmond there is a eutectoid at 3&0®C, 1580®P.) 

and 40 per cent nickel. Hanson placed it at 54 per cent nick­

el, as sho7«i in figure 3, As to 1̂ust what happens in this 

region of the diagram is not v/ell known. As was shown by 

Benedicks 110),on slow cooling, iron nickel alloys of compo­

sitions between 7 and 36 per cent nickel, segregate into two 

constituents with a structure very similar to that of meteor­

ic iron. 

The most complete v/ork that ?/e have on iron-nickel alloys 

is that of Kase (9), who worked with Eonda on the phase dia­

grams of iron, nickel and carbon. He does not consider the 
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raagnetio A, transition a phase change since it is not a 

change in the latice arrangement. By means of the dila-

tometer, magnetic and thermal analysis he traced the tran­

sitions of iron to below room temperature. The phase dia­

gram which he proposes for the iron-niclcel system 1h shorni 

in fissure 4« He does not consider a eutectoid exists at ordi­

nary temperatiires. The separation of two constituents, found 

in iron-nickel alloys, he explains as the lack of the concen­

trated (gamma solution to change over to the alpha state "be­

cause of the hi£;h resistance to latice changes of the metal 

at the lower temperatures. 

In figure 5 is shorn the nickel-carbon phase diagra.m as 

determined by Kase, ITickel was saturated with carbon at defi­

nite temperatures, ciuenched and analyzed for combined carbon. 

Uo attempt was made to determine the state of the carbon that 

separated from the solutions on cooling. It is thought, hov/-

ever, that nickel carbide is stable in the liquid solution at 

temperatures above 1500®C. ISVSST.) but metastable at lower 

temperatures. The diagram is very similar to the iron-carbon 

system with a lower solubility of carbon in the solid solution 

at the eutectic and below. There was no indication of sepa­

ration of nickel carbide in any of the alloys prepared as 

shov/n by microscopic analysis. 
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In the ternary system of iron-carbon and nickel, I-Iase 

determined the effects of nickel and carbon on the Aj,, A# 

and Aa points of iron. These results are shown in fiî ores 

5 and 7. He then determined the solidification points and 

the carbon contents of iron-nickel-carbon alloys and drew 

the ternary iron-carbon-nickel diagram. Figures 8, 9, 10 

and 11 show iron nickel diagrams in tv/o dimensions v/ith var­

ied amounts of carbon. It v/ill be seen that the alpha iron 

region is reduced by the addition of carbon to iron-nickel 

alloys. 

Use has been made of nickel to improve the properties 

of steel for many years. In the last few years it has come 

into a' similar use in gray oast iron. From the diagram shô vn 

above the effect of nickel on the transition temperatures of 

steel and thus to produce troostite, sorbite, martensite and 

austenite v/ill be seen. Thus, according to the Bureau of 

Standards Circular 111), nickel steels may be divided into 

three classes: 

1. Pearlitic steel. Steels containing not more than 10 per 

cent nickel act normally toward heat treatment. 

2. Kartensitic steels. Steels containing between 10 and 26 

per cent nickel when air cooled become martensitic. These 

are sometime.s knovm as self hardening steels. 
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3, Austenitio steels. Steels containing more than 26 per 

cent nickel are austenitic in structure. These can not be 

hardened, by heat treatment. 

Figure IE, taken from Guillet»s work, shows very nicely 

the three classes of nickel steels, 7/hen a special steel of 

high tensile strength, hardness and ductility is desired, hy-

' po-eutectoid steels containing from 1 to 5 per cent nickel 

are often used, Uickel in these percentages increases the 

tqnsile strength and the hardness without loss of ductility. 

It also refines the grain and lowers the critical range which 

permits of a lower q.uenchins temperature and gives greater re­

sistance to wear* The following data taken from the Bureau 

of Standards Circular give a good idea of the effect of nickel 

on the properties of steel: A sample of steel that contained 

no nickel and had been quenched from vev'C, 11450®F,) in HaO 

and then drawn at 704®C, 11300°F,), gave a yield point of 

53,000 pounds per square inch, tensile strength of 90,000 

pounds per sq.uare inch, an elongation of 25 per cent in tv/o 

inches and a reduction of area of 62,5 per cent. The same 

steel Vt̂ ith 3,5 per cent nickel added to it, q.uenched at 787®C, 

114:50®F,) in water and then drawn at 681®G. 11E60®F.) gave a 

yield point of 83,000 pounds per square inch, tensile strength 

of 108,000 pounds per square inch, elongation of 25 per cent 
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in two inches and 66 per cent reduction of area, The data 

here shown is typical of the effects produced by the additions 

of nickel to steels. 

In recent years nickel is being used in gray cast ii'on 

where a special alloy of relative high strength, good mechana-

bility and resistance to wear is desired as in the blocks and 

pistons of motors. 7/ickenden and Tanick 112) of the Inter­

national Hiokel Company, studied the effects of nickel and 

chromium on gray oast iron* The following is a summary of 

their v/ork for nickel: 

1, Below 4 per cent nickel, this element has little or no 

effect on the total carbon but begins to decrease it slightly 

at 5 per cent and above, 

2# Mekel accelerates graphite formation and reduces the com­

bined carbon to 0.80 per cent, and then acts mildly to reduce 

it below this value. 

3, Me to the influence of nickel to break down iron carbide, 

it is very effective in reducing the chill in oast iron. This 

prevents the producting of mottled iron or hard spots. One 

per cent nickel is q.uite positive in its effect. This is one 

of the most useful functions of nickel in cast iron. 

4, V7ith less than 5 per cent nickel, it serves to refine the 

grain. With from 5 to 10 per cent of nickel it again coarsens 

the grain. 
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5.. ITiekel tends to break up the oementite network and thus 

by preventing the growth of thick particles it prevents the 

formation of hard spots. 

6, lUckel, by its effect on the critical points, tends to 

harden the iron matrix* At the same time, by reducing the 

combined carbon, it tends to soften the iron, 

7. Hickel, by eliminating hard spots in the iron, greatly 

improves its raechanability, 

8« Hickel is effective in improving the tensile strength of 

cast iron. It is, however, more effective in the lower sili­

con than in the high silicon alloys. In a 1,40 per cent sil­

icon alloy the tensile strength is increased from El,850 to 

33,325 pounds per square inch by the addition of 3,88 per­

cent nickel. In a gray iron with E.OO per cent silicon the 

increase is from 2S,950 to 28,852 pounds per sq.uare inch by 

the addition of 5,00 per cent nickel. And in one containing 

E.60 per cent silicon the increase is from 20,962 to E7,087 

pounds per sq.uare inch by the addition of 5.70 per cent nickel. 

In all of these alloys the carbon v/as between 2,40 and 2.70 

per cent. 

9, Hickel definitely improves the toughness of gray cast iron 

as measured either by transverse deflection test or by other 

methods of measuring. The greatest improvement is obtained 

with alloys containing betv/een 3 and 5 per cent nickel. 



www.manaraa.com

-33-

10, G-ray oast iron containing not more than 6 per cent 

nicifcel is not affected as to shrirLkiage in the mold, forming 

of porous metal and blov; holes or as to fluidity of the 

molten iron. 

11, T/hen the nickel content is increased to between 6 and 

15 per cent the product becomes martensitic and is yery hard, 

Waen the nickel content is increased to above 15 per cent the 

iron becomes austenitic, which again reduces the hardness but 

leaves the material very tough, 

•From the effects of nickel on the properties of steel 

and gray cast iron as shown above, and from its complete rais-

eibility in the gamma iron and non miscibility in the iron 

carbide, one would predict that by additions of nickel to mal­

leable iron, the rate of graphitization would be increased, 

the microscopic structure would be improved and the physical 

properties would be bettered. The present investigation v?as 

carried out to establish more definitely the effects of nickel 

on the malleablizing processes and the properties of the prod­

uct produced. 
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III, PRSPARATIOIT OP ALLOYS 

The materials used in the preparation of the alloys used 

in this investigation were eleotrolytic nickel and coramercial 

white cast iron of the following .compositions: 

I, II. III. 

Carbon 2, .25̂  2 .35̂  ̂ 2 .50̂  

Silicon 0, .96 0 .90 0 ,86 

Sulfur 0. ,033 0 .033 0 

to o
 

.
 

Manganese 0, .21 0 .21 0 .56 

Phosphorus 0. .155 0 .155 0 .140 

For the study of the rates of graphitlzation, weighed quanti­

ties of nickel and cast iron were melted in an Â ax induction 

furnace. The metal was placed in magnesia crucililes and melt-

edj stirred twice with an Armco iron rod and poured at a 

temperature of about 1500®C, IE73E®F,) into sand moulds. The 

sand molds were prepared hy making holes in moderately packed 

molding sand and then drying them. The rods thus cast v/ere 

about five eighths of an inch in diameter and from 8 to 10 

inches in length. The bars were cast in the vertical position. 

For the physical tests, regulation test bars were cast 

horizontally in green sand molds that v/ere allov/ed to stand in 

air for two days, Tv/o bars v/ere east in each mold. The melts 

were made in plumbago crucibles in the Ajax electric induction 

furnace,. 1̂11 the bars were allowed to cool to below the crit­
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ical temperature before they were removed from the molds. 

The alloys were analyzed for nickel and found to be vdthin 

0.15 per cent of the value calculated from the weights of 

metal melted. 
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IV. THE EFI-ECT OF ITICKEI ON THE RATE OF 
GRAPHITIZATIOH AT THE HIGH TEMPERATURE 

The ptirpose of the high temperature anneal in the 

manufacture of malleable iron is to eliminate the free iron 

carbide at a sufficiently high temperature to allow the re­

action to progress as rapidly as possible and at the same 

time precipitate the carbon in good form. It has been shown 

that, in commercial white oast iron of 1 per cent silicon, the 

carbon is precipitated in good rounded spots v/hen the temper­

ature is not above 99S®C. 11820®F.), The temperature used for 

the high temperature anneal in this work was 935°C< 11717®F.). 

The 5/8 inch bars, cast as described xinder the prepara­

tions of alloys, were used for this study. They were broken 

into pieces about one inch in length. One sample of each com­

position was polished and photographed as cast to show the 

dendritic white oast iron stiructure* The other samples were 

packed with powdered graphite in graphite crucibles to prevent 

oxidation. Each crucible contained one sample each of several 

compositions. These were then placed in a vertical Hiimp fur­

nace, which had been previously brought to temperature. Hot 

more than ten minutes v/ere required to bring the furnace again 

to the annealing temperature. At intervals of a half hour the 

furnace was opened and a crucible removed* The samples were 
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then allowed to air cool in the cinioibles. Not more than 

fire minutes were req,uired for the samples to reach a temper­

ature below red heat. The time recorded is the actual time 

the samples v/ere in the furnace, 

The samples were then numbered to indicate the series 

and the time of the anneal. The first number represents the 

series and the last nuraber the time in half hours, of the an­

neal, Because of the extreme hardness of the \7hite cast iron 

samples they were marlced before annealing by grinding notches 

in the edges of the samples. 

These samples were then polished and studied, etched and 

unetched, to determine to the nearest half hour the time re­

quired for the disappearance of free iron carbide. Photomi­

crographs were taken of 1.r?iese samples to shoiv the progress of 

graphitization and the effect of nickel on its rate. Repre­

sentative samples are shovm in figures 13 to 44. 

Sample number 15, shown in figures 1«5 to 16, contained 

no nickel but was remelted in the same manner as the other al­

loys. The photomicrographs show that there is appreciable free 

iron carbide left at the end of six hours. The time required 

for complete graphitization of this alloy was between eleven 

and twelve hours. 

The following table gives the time required for complete 

graphitization, the nickel content, and the figures referring 

to the photomicrographs where they are shown,- In each case 
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the first figure refers to the photomicrograph of the bar as 

cast. 

: Sample 
: Uuraber 

Weight 
% lickel 

Time of 
1st stage 

Figures : 

: 15. 0,0% 11-12 hrs 13 to 16 i 
: 15 1.0 6 
: 8 1.5 4 
; 17 1,9 •3.5 IS to 20 : 
: 2 2,5 3 
: 18 2.5 E.5 21 to 24 : 
: 3 3.0 1.5 
: 19 3.2 1.5 25 to 28 : 
; 20 3.9 1.0 29 to 32 : 
: 9 4.0 1.0 
: 6 4,0 1.0 
: 5 5,0 0.5 
: 10 5.9 0.5 33 to 36 : 
: 11 6.3 0.5 
: 12 7.3 0.5 37 to 40 : 
; 14 8.8 0.5 41 to 44 : 

13 10.3 0.5 
• 

lo attempt was made to determine the time to less than 

a half hour» Those samples marked 0.5 hours contained no 

free carbide after one half hour at the annealing temperature. 

It was shown by Kilcuta 14) that the effect of silicon on 

the time re(iuired for the first stage of graphitization fol­

lowed a logarithmetic relation. The equation he used, as 

shown before, was 
B 

t = A*S 
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where t is time in hours, A aiid B constants and S the weight 

per cent of silicon. 

It is fonnd that the effect of nickel on the time for 

the first stage of graphitization may "be expressed "by the 

equation, 

t = A . U) 

where t is time in hours, A and B are constants, H the weight 

per cent of nickel in the alloy of composition as shovm under 

preparation of alloys, and e is natural logarithiti, A may oe 

eliminated from this equation when tv/o values of t and IT are 

known, iiquation 1 then 'becomes, 

E.30S log Itj/ta) = BlHi - II«). 

B ° Ui/ta). IS) 
- '-8 

Samples 15, 17, 18, 19 and EO were selected for the eval­

uation of the constants A and B, For samples 18 and EO, 

= 2>.9, ti = 1.0 

H, = E.5 ta = 2.5. 

Substituting these values in equation 2 gives, 

B = -0.655. 

And for samples 17 and IS, 

Ua = 3.2 ti = 1.5 

Ka = 1.9 ta = 3.5 
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And, B = -0«653. 

Averaging these two values gives, 

B = -0.654 

Substituting this value of B in eq.uation 1 gives, 

t = A 

The following table shows the values of A obtained by-

substituting values of H and t in etiuation 1 and solving for 

A. 

:Sample : 
;Humber : II ; 

« 

t A ; • 
• * • «-
; 15 : 1.0 : 5.0 

• 

11.7 i 
: 19 : 3.S : 1.5 lE.l : 
: 17 ; 
« • • « 

1.5 : 
• 

3.5 - 12,1 : 
• 

Average IS.O ; 

Substituting this value of A in the above equation gives, 

t » lE.O e -0-S54H  ̂

Values of IS were then substituted in equation 3 and solv­

ed for t̂ . The values thus obtained are shown in the following 

table. 

: U : t 11 t t : 
* « 

J O-.O i 12. 
0.5 t 7.86 

: 1.0 : 6.18 
: 2.0 : 3.34 
• • 

,1 J 1 

3.0 i 1.74 ! 
4.0 : 0.865 ; 
5.0 : 0.445 : 
&;0 ̂ : 0;236 j 

« « 
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In figure 12 the calculated values of t are plotted on 

the curve, the calculated values being marked 0. The ex­

perimental values are plotted on the same figure and marked 

X. It is therefore shown that the experimental data agree 

very closely with those calculated from the eq.uation. How­

ever this eq,uation would not give concordant values for al­

loys that were far varient in silicon or carbon content. 
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Figure 13. Sample 160, 
0,0% Hi cast. 

Figure 15. Sample 168. 
O.Ô ' Mi, Ajcmeaied at 
936 C, 11717®P.), air 
cooled, etched witb. 5% 
BIO,. 100 X. 

Figure 14, Sample 166, 
0.0̂  Ei, .'•jineaied at 
936®C. il717°F.), for 3 
hrs., air cooled, nitric 
acid etched. 100 X. 

Figure 16. Sample 1612. 
0*0% Hi, Annealed at 
926''C. a717°F,), for 6 
hrs., air cooled, etched 
with nitric acid, 100 X. 
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Pigure 17. Sample 170, 
l.Ŝ  !Ti as oast, 
nitric acid etched, lOOX. 

Figure 19, Sample 176, 
Same as 170 annealed for 
3 hrs. at 936"C, 11717«F.), 
air cooled, nitric acid 
etched, 100 X. 

Figure 18, Sample 174, 
Same as 170 annealed at 
936®G.11717®F.) for two 
hours, air cooled, nitric 
acid etched, 100 X. 

Figure 20, Sample 178, 
Same as 170, annealed for 
4 hrs, at 9360C,a717®F.), 
air cooled, nitric acid 
etched, 100 X. 
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Figure 21, Sample 180, 
2,0% Hi as cast. 
nitric acid etched, 100 X. 

Fi-sure 22. Sample 183, 
Same as 180 annealed at 
936«C. 11717»F.), for 1| 
hours, air cooled, nitric 
acid etched, 100 X. 

:.k» V 
Figure 23, Sample 184, 
Saoae as 180 annealed at 
936»C. 11717»F.), for 2 hrs, 
Hitric acid etched. 100 X. 

Figure 24. Sample 184, 
Same as figure 23, un-
etched, 100 X, 
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Figtpe 25. Sample 190. 
3»8jfe Hi as east. 
Kitric acid etched, 100 X, 

Figure 26, Sample 193. 
Same as 190 annealed at 
936ac. a717°F.), for 1| 
hrs., air cooled and 
nitric acid etched. 100 X. 

m 

Figure 27. Sample 194, 
Same as 190 annealed at 
936®C. a7l7®F.) for E 
hours, air cooled and 
nitric acid etched. 100 X, 

•% 7 % 

t 

> 0 

H 

i 

Figure 28. Sample 194. 
Same as 190 annealed at 
936®C. 11717®P.) for 2 
hours and air cooled. 
Unetched. 100 X. 
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FigiJre S9* Sample 200, 
3.,90S Hi as oast, 
Hitrio acid etched, 100 X, 

Fignre 30, Sample 202. 
Same as 200 annealed at 
936®C. (1717®F.) for 1 
hour and cooled in air, 
ITitric acid etched, 100 X, 

Figure 31. Sample 203, 
Same as 200 annealed at 
936«C. 11717°F,) for li 
hours, air cooled and 
nitric acid etched, 100 X, 

Figure 32, Sample 203, 
Same as figure 31 but un-
etched, 100 X. 
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Figure 33. Sample 100, 
5.9̂ 0 Hi as cast» 
Mtric acid atohed. 100 X. 

Figiire 24. Sample 101. 
Same as 100 annealed at 
936®C. a'717®F.) for | 
hour, Unetched. 100 X. 

Figure 35< Sample 101. 
Same as 100 annealed at 
9350c, 11717®F.) for 1 
hoTir and air cooled, 
Mtric acid etched, 100 X. 

Figure 36, Sample 101 
Same as 100 annealed at 
9360G, a717®F,) for f 
hour and air cooled. 
Ifitric acid etched. 100 X 
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Figure 37, Sample 120, 
7.3̂ ' M as cast* 
nitric acid etched, 100 X. 

Figure 38, Sample 121, 
Same as 120 annealed at 
936®C, a717®F.) for | 
h.r,, air cooled and nitric 
acid etched, 100 X. 

A'.'i . 

Figure 39, Sample 121, 
Same as 120 annealed at 
936®C. tl717oF,) for | 
hour̂  air cooled and un-
etched.. lOO X. 

Figure 40, Sample 121, 
Same as 120 annealed at 
936<̂ G, 11717®F. ) for A 
hour, water cooled ana 
nitric acid etched. 100 X. 
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41̂  Sample 140* 
m as eaat» 

WiU'lo aoid otohsd, 100 Z. 

Fi£,nire 4S, Snr jp lc  140, 
SCiî ie as fiî re 41,. 

580 X, 

Figiire 4S« Sauiple 1̂ 1» 
Saao aa 140 arniealeil at 
93611717<»F.) tori 
houy» air cooled and 
nitric acid etched* loO X* 

Flgai'e 44:» Sample 141, 
Same as 140 ann&aled. at 
935̂ €̂  a?17®F.) for f 
hoiir> air eoolod ana ua-
etohed.: loQ X. 
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7, a?HE EFFECT OF HICKEL OK THE RATE OF 
GRAPHITIZATIOIT IK THE CEITICAL RAUGE 

It was shown xmder the theories of graphitization that 

the cooling rate from the high temperature to the eutectoid, 

most effective on the rate of graphitization is dependent on 

the distance of the carbon content of the solid solution from 

the carbon solubility line» To keep this at a maximum v/ould 

req.nire cooling at such rate as to keep the composition very-

close to the solubility of carbon from iron carbide. On the 

other hand this would tend to slow up the reg,ction due to the 

decreased rate of migration and reaction at the lower tempera­

ture, Thus by slower cooling the time required for complete 

graphitization may be decreased to a minimum and then again 

increase. 

The second stage of graphitization takes place only when 

the temperature is at or below the iron carbon eutectoid. If 

the temperature is far below the eutectoid the rate of graphi­

tization will be again decreased by the decreased rate of mi­

gration and reaction. It is thus desirable to complete the 

graphitization at a temperature not too far below the tempera­

ture of the iron-carbon eutectoid. 

Differential heating and cooling curves v/ere run on 

seven alloys to determine the critical temperature. The 

samples used had been previously annealed to contain only 
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ferrite and pearlite. In the follo?/ing table and in figure 

77 are shown the effects of nickel on the temperature of the 

critical range for alloys containing 1 per cent silicon» 

:Sample 
rlfumber 

Weight 
% Nickel 

Thermal Effects :Sample 
rlfumber 

Weight 
% Nickel Cooling • 

« Heating : 

: 16 0.0 . 737®C. 11350OF.) 
• 
« 

«' 
• 
793°C. 114&0®F.): 

: 15 1,0 704 1300 « 
• 776 1430 : 

: 19 S.2 675 1250 741 1370 : 
20 3.9 659 lEEO 741 1370 

; 5 5.0 548 1200 • 
• 734 1350 : 

: 11 6,3 604 1120 • 715 1320 : 
: 12 
• 

7.3 
1 
» 

604 1120 • 

» 
• 

670 1340 

The average rate of heating and cooling used in these 

determinations was 11*1®C. 120®F,) per minute. The values of 

Ari given by Kase (9) for pure iron-carbon-nickel alloys are, 

with 0 per cent nickel 700®C, 1129E®F,), and for a 6 per cent 

nickel 550®C, 110EE®F.). The value for the A/-, point as given 

by Hayes (1) for a 1 per cent silicon alloy is 759®G. tl400®F.). 

The value here obtained for a 6,3 per cent nickel alloy v/ith 1 

per cent silicon is 604®C. IIIEÔ F.), The difference between 

this value and that of Kase for a 6 per cent nickel alloy v/ith 

very low silicon is 54®C, 198®F,). The difference between the 

value of Hayes and that of the pure iron-carbon system is 59®C. 

il08®F.). This would indicate that the effect of nickel on the 

temperature of the point is practically the same in 1 per 

cent silicon alloys as in pure iron carbon alloys. 
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20 study the effect of niciel on the rate of graphitla-

ation through the oritioal range, each of four crucibles v/ere 

packed with samples varying in nickel content from 0 to 10 

per cent. The samples were packed in powdered graphite to 

prevent appreciable oxidation. They were then placed in the 

Hump annealing furnace and the temperature held at 945®C, 

11735°F,) for 16 hours to graphitize all the free iron car­

bide. At this stage one crucible was removed, cooled in the 

air and the samples marked A, The current to the furnace was 

then reduced and the temperature allov/ed to fall to 548®C, 

11200®P*) in 10 hours. The second crucible was then removed, 

cooled in air and the samples marked B« The temperature of the 

furnace was then allowed to fall to 538®C, 11000°F.) in five 

hours and the third crucible was removed, cooled in air and the 

samples marked C. The fourth crucible was left in the furnace 

10 hours longer, when the temperature v/as only slightly above 

room temperature. These samples were then marked D, 

Photomicrographs of representative samples of this ex­

periment are shown in figures 45 to 76, It will be noted that 

nickel increases the rate of graphitization when present in 

less than 5,5 to 6 per cent. Samples containing more than 6,0 

per cent do not graphitize so readily due to the lowering of 

the critical range to such an extent that rates of diffusion 

and reaction are decreased. 
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Samples ISA, B, C and D are shown in figxires 45 to 48, 

In 16B eonsideraljle ferrite has formed, C and D have experi­

enced no f\irther change. 

Samples 17A, B, C and D are shown in fiĵ nres 49 to 52. 

Sample 17 contains 1.9 per cent nickel and shov/s more ferrite 

in the 3, C and D treatments ,than did 153, C or D, Sample 

17G shov;3 more ferrite than does 17B, 

Samples ISA, B, C and ]) are shown in fî ui-es 53 to 55, 

They contain Z,5 per cent niclcel., There is a decided increase 

in the proportion of ferrite over that in sample 17* 

Sample 19 contains 3,2 per cent nickel. As is shown in 

figures 57 to 60, graphitization is practically complete in 

samples 19B, C and J), 

Sample 20, containing 3,9 per cent nickel, is shown in 

figures 61 to 54, It is completely graphitized by the B, C 

and D heat treatments. 

Sample 10, containing 5,9 per cent nickel, is shown in 

figures 65 to 68, ITiimber IOC and D are completely graphitized 

but B is not. This is probably due to the lovyering of the crit­

ical raruge to below 548®C, llSOO®̂ !".). 

Sample number IE, containing 7,3 per cent nickel, is 

shown in figures 59 to 72* Here as in sample 10 complete 

graphitization occurs in C and D but not in B, 



www.manaraa.com

Sample 14, containing 8,8 per cent nickel, is shown in 

figures 73 to 76. Ho ferrite is formed in B and only small 

amounts in C or D» 

Î om the above experiment it is concluded that nickel 

increases the rate of graphitization in the critical range 

to the extent that alloys as used here containing between 

3 and 6 per cent nickel can be completely graphitized in less 

than twelve hours. 
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Figore 45. Sample 16A. 
Annealed at 945̂ *0. il736®F.) 
for 16 hours, air cooled 
and nitric acid etched, 100 X« 

Figure 45. Sample 16B. 
Same as 16A, Remained in 
furnace 10 hrs. while 
temperature dropped to 
648®C. USOÔ F.), air cool 
ed and nitric acid etched. 

I 

Figure 47, Sample 160. 
Same as 16B, cooled from 
648®C. aS00®F,') to 538®C. 
11000®F.} in 6 hrs. litrio 
acid etched, 100 X. 

- '• 

" 

.vK.f-V-
i't'i. Wil is'- *' '•' «iv -"i 

i •9- -Ts 

Figure 48. Sample 16D. 
Same as sample 150 but 
allowed to cool to room 
temperature in furnace. 
Uitrio acid etched. 100 X. 
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Figure 49, Sample 17A.. 
1,9% Hi. Annealed at 945®C, 
11735*P,) for 16 hours, air 
cooled and nitric acid 
etched. 100 X, 

Figure 50# Sample 17B, 
Same as 17A cooled in fur­
nace to 648®C. a200»F.) 
in 10 hrs., then air cooled, 
Sitric acid etched. 100 X, 

Figure 51. Sample 17C. 
Same as 17B cooled in 
furnace to 538®C, a000®F.} 
in 6 hours. Hitric acid 
etched. 100' X. 

Fissure 52, Sample 17 D. 
Same as 17C eooled to room 
temperature in furnace in 
10 hrs. Kitric acid etched. 
100 X. 
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Figure 5S, Sample 18A» 
2.5/b Hi, Annealed at 945®C, 
11735®P.) for 16 hrs., air 
cooled and nitric acid 
etched. 100 X« 

Pî re 54. Sample 18B. 
Same as 18A cooled in fur­
nace to 548®C. 11800®F.) 
in 10 hours. Hitrie acid 
etched. 100 X. 

Figure 55. Sample 18G. 
Same as 18B cooled in 
furnace from 648®C.11200°F,) 
to 558«C. aOOÔ F.) in 6 
hrs. Hitric acid etched, 
100 X. 

Figure 55. Sample 18D. 
Same as 180 cooled to room 
temperature in furnace in 
10 hrs. Kitric acid etched, 
100 X. 
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Figui-e 37, Sample 19A, 
5.E0̂ o ili- Aiiiiealed at S45°C« 
11735®F.) for 16 hrs., air 
cooled aiid nitric acid 
etched. 100 X, 

Figure 58. Samplo 19B., 
Same as 19A cooled in fur­
nace to 648®C, tl200«r«) 
in 10 hours. Nitric acid 
etched, 100 X, 

Figure 59. Sample 190. 
Same as 19B cooled from 648®C. 
a200®F.) to 538®C. a000®F,) 
in 5 hours in furnace# Hitric 
acid etched. 

Figure 60. Sample 19D, 
Same as 19C cooled to room 
temperature in furnace in 
10 hours. Hitric acid 
etched. 100 1. 
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Figure 61 • Saaiple EOA* 
Ki. Annealed at 945®C, 

(1735*'F*) for 16 hourŝ  air 
cooled and nitric acid 
etched» 100 X. 

Figure 6S. Sample EOB. 
Same as 19A cooled in fur­
nace from 945®C. {1735°F.) 
to 648®C. 11200OF.) in 10 
hours and air cooled. 
Hitric acid etched, 100 X. 

Figure 63, Sample 20C» 
Same as 20B coded in fur­
nace from 648''0* llEOÔ F.) 
to 5380C, aOOO®F.) in 6 
hours and cooled in air, 
Hitric acid etched, 100 X. 

Figui'e 64, Sample SOD, 
Same as 200 cooled to room 
temperature in furnace. 
Hitrie acid etched, 100 X. 



www.manaraa.com

-61-

Figure 65, Sample lOA. 
5.9Si Hi. Annealed at 945®G, 
11735®P.) for 16 hours and 
then cooled in air. nitric 
acid etched, 100 X, 

Figure 66. Sample lOB. 
Same as 10 A cooled in fur­
nace from 945®C. (1735®F,) 
to 548®C. ilE00®P.) in 10 
hours, air cooled and nitric 
acid etched. 100 X. 

Figure 67. Sample IOC. 
Same as lOB cooled from 648®C. 
a200®F.) to 5S8®C. 11000®F.) 
in furnace in 6 hours, air 
cooled and nitric acid etched, 
110 X. 

Figure 68, Sample lOD, 
Same as IOC "but cooled from 
SSS'̂ C. 11E00®F.) to room 
temperature in furnace in 
10 hours. 
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Figure 69. Sample 12A« 
7.3̂ ' li. Annealed at 945®C. 
11735®F.) for 15 hours, air 
cooled and nitric acid etched, 
100 X. 

Figure 70. Sample 12B. 
Same as 12A but cooled in 
furnace from 945®C. il735®F.) 
to 648®C. 11200®F.) in 10 
hours, air cooled and nitric 
acid etched, 100 X, 

Figure 71. Sample 120, 
Same as 12B cooled in fur­
nace from 648**C, il200®F,) 
to 538®C» 11000®F.} in 6 
hours, air cooled and nitric 
acid etched. 100 X. 

•a. >• „v«• -.. % J?" 

jT'. < •;7-' 

'•̂ 39C V*'' •' 

Figure 72. Sample 12D, 
Same as 12C cooled from 
538®C. tl200®F.) to room 
temperature in furnace in 
10 hours and nitric acid 
etched, 100 X. 
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Figure 73, Sample 14A, 
8,8̂  ITi, Annealed at 945®G. 
11735®F.) for 15 hours and 
air cooled. Mtric acid 
etched, 100 X, 

Figure 74. Sample 14B. 
Same as 14A cooled in fur­
nace from 945®C, (1735®F,) 
to 648®C. 11200"F.) in 10 
hours, air cooled and nitric 
acid etched, 100 X, 

Figure 75, Sample 140, 
Same as 14B, furnace cooled 
from 648®C. {1200«F.) to 
538®C, aOOO®F.) in 6 hours, 
air cooled and- nitric acid 
etched. 100 X, 

Figure 7S, Sample 14Di 
Same as 14C, furnace cooled 
from 538®C. IIOOÔ F.) to 
room temperature in 10 hours 
and nitric acid etched, 100 X. 
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VI, DITEHLIIMIOH OF THE MIHIMOM 
MmAiim- T im 

From the study of graphitizing rates at the high 

temperature and in the critieal range, it is estimated that 

alloys containing betv/een 3 and 6 per cent niciiel and 1 per 

cent silicon can he graphitized completely in less than 11 

hours. The following experiments were run to determine the 

minimam time for complete graphitization. In all of these 

experiments the samples were packed in powdered graphite in 

graphite crucibles to prevent oxidation. The heat treatments 

were carried out in a Hump furnace, hand controlled. The 

temperature v/as measured with an iron-constantan thermocouple. 

1. Heat Treatment H. 

ITine samples containing nickel additions between 3,0 

and 4,5 per cent and the original white cast iron bar that 

had been remelted without additions of nickel and one that 

had not been remelted were used in this experiment. The 

samples were placed in the furnace and brought to the temper­

ature of 959®0, 11760®F.). The temperature was then allowed 

to rise to 10E7*C, 11885®F.) in four hours. The power was 

then turaed off and the temperature allowed to fall to 556®C. 

11035®F.) in four hours. The total time of the anneal ŵ as 8 

hours 
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Photomicrographs of the original "bar (not remelted) are 

shown in figures 78 and 79. There is appreciable free iron 

carbide present and large areas of pearlite. These may be 

compared to samples SI and E6, containing 3.46 and 3,04 per 

cent nickel and shown in figui'es 80 and 81, Both of these 

samples are completely graphitized und̂ r the above treatment, 

2, Heat Treatment 59. 

Sample 25, containing 4.18 per cent niclcel, was used in 

this experiment. It was heated to 981®C, 11800®?.) and al­

lowed to cool to 939®C, (1725®F.} in one hour and then to 

593®C. 11100®F.) in 6 hoiirs. The total tirae of the anneal 

was 7 hours. The photomicrograph of this sample is shown in 

figure 82. It is completely graphitized and the carbon is 

precipitated in good form and the ferrite grain fine but of 

good form. 

3. Heat Treatment Gil. 

Sample 25,containing 4.18 per cent nickel, was used in 

this experiment. It v/as placed in the furnace and heated 

from 912®C, 11675®F.) to 997®C. U830oF.) in 30 minutes. 

The power was then turned off the furnace and the temperature 

allowed to drop to 593®C, (1100®F.) in 6 hours and 30 minutes. 

The total time of the anneal was 7 hours, A photomicrograph 

of this sample is shown in figure 83, It is completely 

graphitized. 
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4> Heat Treatment F. 

Samples 9, 11, 19, 20 and El, containing 4*0, 5.3, 3.2, 

3,9 and 9,1 per cent nickel, were used for this anneal. The 

samples were held at 939®C, 117E5̂ P.) for 30 minutes and 

then cooled to 593®C. 11100®F.) in 7 hours and 30 minutes. 

The total time of the anneal was 8 hours. Sample 19 con­

tained appreciable free iron carbide. Samples 9 and SO were 

completely graphitized, A photomicrograph of sample 9 is 

shown in figure 84, A photomicrograph of sample 11 is shown 

in figure 85, It is either not completely graphitized or 

the rigidity of the metal was so great at the temperature of 

completion that the ferrite grains failed to form regularly. 

Sample El oontained considerable combined carbon in the form 

of hardening bodies. It shows a martensitic structure. 

It is thus shov/n that white east irons containing 1 per 

cent silicon, 2,25 per cent carbon and from 3 to 6 per cent 

nickel can be completely graphitized in from 7 to 9 hours. 

In all cases the carbon was precipitated in good form axid the 

ferrite, though much refined in grains, seemed of good 

structure, 
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Figure 78, Stoclc "bar* 
Heat treatment R» lime, 8 
hours, 0 % nickel. Hot re-
raeltea., Hitrio acid etched. 

100 X. 

Figure 80, Sample 31H. 
3.45̂  Ki. Total time of an­
neal, 8 hours. Uitric acid 
etched, 100 X. 

Figure 79. Stoclc l5ar. 
Hot remelted. 0 % nickel. 
Heat treatment H. Time, 8 
hrs. Uitric acid etched, 

100 X. 

Figure 81. Sample 26H, 
S,04Ĵ  lUckel. Total time_ 
of anneal, 8 hours. Hitric 
acid etched. 100 X. 
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Figure 8E. Sample E5 G9. 
4.18 Ui.. Total time of an­
neal, 7 hoTirs. Hitrlc acid 
etolied. 100 

Figure 84, Sample 9F, 
4:% !U, Total time of an­
neal, 7J hours. Jfitric 
Aoid etched, 100 X. 

Figare 83. Sample 25 Gil. 
4•IS Hi. Total time of an­
neal, 7 hours V lUtrio acid 
etched. 100 X. 

' t 

• it '̂ " '•'s • 

Figure 85. Sample IIF. 
6,3% m, Total time of an­
neal, 7̂  hours, litric 
acid etched, 100 X* 
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VII, THE EFFECT OF HICKEL OH THE MICRO STRUCTURE 
OF MITE MD MiLLLEABLE CAST IROH 

Hiokel has little or no effect on the microstructure 

of the free iron carbide in white oast iron. As. might "be 

anticipated from the effect of nickel on steel and its solu­

bility in the gamma iron solid solution, the matrix of white 

cast iron may be changed to martensite or to austenite by 

additions of nickel. This change is shovm by the photomicro­

graphs in figures 13, 17, 21, S5, S9, 33, 37, and 41. Sample 

19 containing 3*8 per cent nickel is shOTm in figure El, 

Sample 20, containing 3.9 per cent nickel, is sho\7n in figure 

25. Sample 19 has the regular v/hite cast iron matrix, while 

sample 20 is m̂ ensitic. Sample 14, containing 8.8 per cent 

nickel is shown in figure 41 at 100 magnification and in fig­

ure 42 at 580 magnification. The matrix in this sample con­

tains only a few larger v/ell-formed martensitic needles, era-

bedded in austenite. 

The effect of nickel on the microstructure of malleable 

cast iron in amounts from 0 to 3 per cent, is to refine the 

grains of the ferrite and to increase the number of carbon 

nuclei. This is shown by the photomicrographs in figures 34 

to 60» The size of the carbon spots are reduced and the num­

ber increased. 
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Sample 19, containing S,Z per cent nickel, and sample 

SO, containing 3.9 per cent nickel, show a definite change 

in the microstinieture of the mallea"ble iron product. This 

is shovm by the photomicrographs in figures 57 to 64, In 

sample 20 the carbon is precipitated in much finer spots 

than in sample 19, and is evenly distributed throughout the 

samples, The ferrite grains are refined in about the same 

proportion as in the lov;er nickel alloys» 

Samples 10, 12 and 14, containing 5.9, 7,S and 8.8 per 

cent nickel, are shown in figures 65 to 76, The carbon in 

these alloys, while finely divided and not flakey, is not 

evenly distributed and appears to be precipitated in the po­

sition formerly occupied by the free iron carbide. Sample 

10 shov/s further refinement of the ferrite grains, but sample 

12 shows an increase in ferrite grain growth. 

It should be noted that the change in the carbon pre­

cipitation occurs simultaneous with the change in the struc­

ture of the v/hite cast iron matrix. This would indicate 

that the martensitle matrix contained a larger number of car­

bon nuclei, and thus the carbon is precipitated at a greater 

number of centers. 
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i 7III. DISCUSSIOE OF RESULTS 

I"t iiES bsen shown above "thiil; tiiere are two types of 

I alloying constituents with, reference to the first stage of 

I graphitization of v/riite cast iron. In the first class, are 

those elements which are associated with the carbide as a c 

: carbide, or as miscible solid solutions. In the second class 

are those elements which are not associated v/ith the carbide 

but are miscible in the gamma iron phase. 

If in the first case a stable ceirbide of the alloying 

element is formed, the iron carbide may be replaced in part 

I or completely by this more stable carbide, which may not 

graphitize at all under regular aimealing conditions. If a 

stable compound of the element and carbon is not formed, it may 

be associated with-the iron carbide as miscible solid solutions 

of the element and iron carbide, of a compound of iron and the 

element, and iron carbide or of the two carbides. In all of 

these cases the effect will be the same. The iron carbide v/ill 

be diluted by the alloying constituent, thus decreasing fche ac­

tivity of the carbon from the iron carbide, in proportion to 

its distribution between the two phases and the amount present. 

The activity of carbon from the carbide phase may even become 

less than its activity from graphite. In this case the re-
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acblou v/ould proceed in. tlie reverse direction. As graph.1-

tization progresses the added constituent will be concen­

trated in the remaining iron carbide, and thus its effect 

would be increased until it ciay stop the reaction entirely. 

This v/ould result in only partial graphitization at the high 

temperature. 

In the second case the added constituent is not associ­

ated with the carbide and is miscible in the proportions add­

ed with the gamma iron solid solution. This would result in 

a dilution of the iron in the solid solution thus a decrease 

in its activity. Under eauilibriuin conditions the activity 

of iron and carbon froa the solid solution and from iron car­

bide must be ê ual. With a decrease in the activity of iron 

from the solid solution there v/ill be an equal decrease in its 

activity from the iron carbide. In order for iron carbide to 

be precipitated there must be a proportional increase in the 

activity of the carbon - from the solid solution, v/hich will, 

at equilibrium, eaual the activity of carbon from the iron 

carbide. The difference in the activity of the carbon from 

iron carbide and from carbon is thus increased by dilution of 

the iron solid solution. This will result in an increased rate 

of graphitization. However, an increase in the activity of 

carbon from iron carbide does not infer that its solubility 
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must increase. The added constituent will affect the solu­

bility of iron carbide, only, in that it changes the proper­

ties of the solvent, 

Uiclcel is of the second class of added constituents. 

It has a face center cubic lattice, similar to that of gamma 

iron. It is immiscible with iron carbide, but is miscible 

with both alpha and gamma iron. Its solubility in gamma iron 

is greater than its solubility in alpha. 

In the first stage of graphitization, nickel affects the 

rate of reaction in accordance with the above discussion. It 

is dissolved in the gamma iron and increases the rate of 

graphitization. The time t in hours for the disappearance of 

free iron carbide in a 1 per cent silicon and E,2 per cent 

carbon alloy may be calculated from the eĉ uation, 

-0.654Ef 
t = 12 e 

\7here e is natural logarithm and K the weight per cent of 

nickel. 

Added elements divide themselves into tv;o classes as 

they affect the second stage of graphitization, those which 

are more soluble in alpha than in gamma iron and those v/hich 

are more soluble in gamma than in alpha iron. In the first 

case, as ferrite is formed the alloy constituent will be di­

luted in the gamma phase and thus, as the reaction progresses. 
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I its tendency to accelerate or retard the reaction will be de­

creased, In the second case, as ferrite is formed the alloy-

i ing constituent will bs concentrated in the gamma phase and 

I thus the tendency to retard or accelerate the reaction will be 

I increased. 

! Uiclcel is of the second type of alloying constituent. It 

I is thus concentraied in the gamma phase as the reaction pro­

gresses and its effect to accelerate the reaction is increased. 

• This explains the results found for nickel alloys in the 

i second stage of graphitization, xhey were either completely 

graphitized or contained relatively small portions of ferrite. 

This is in accordance with the theory that the rate of reaction 

would be increased as the second stage of graphitization pro­

ceeded. 

j It was found; that nickel addition to white cast iron 

containing 1 per cent silicon and 2 , 2  per cent carbon greatly 

increases the rate of graphitization of both stages; that these 

alloys respond to graphitization during comparatively rapid 

rates of cooling through the critical range; and that these 

alloys with 3.5 to 5 per cent nickel additions can be complete­

ly graphitized in seven hours. 
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